October Insights From Five Companies Winning With Big Data Analytics

Harnessing the power of Big Data, and finding the right set of tools that will enable your business to efficiently generate value from it comes with its challenges. Successfully utilising the power of technology starts with a shift in culture, adopting a data-driven mindset and clearly identifying the business challenges you are looking to address with data analytics.

“The biggest challenge of making the evolution from a knowing culture to a learning culture—from a culture that largely depends on heuristics in decision making to a culture that is much more objective and data driven and embraces the power of data and technology—is really not the cost. Initially, it largely ends up being imagination and inertia.” – Murli Buluswar: Chief Science Officer at AIG

Businesses can use information derived from data to increase their efficiency and success in many ways, like automating processes and gaining in-depth knowledge of target markets. This month, we’ve gained insights from five businesses who are front-runners in the data analytics game.

 

#1 – AMAZON

“The next time you contact the Amazon help desk with a query, don’t be surprised when the employee on the other end already has most of the pertinent information about you on hand. This allows for a faster, more efficient customer service experience that doesn’t include having to spell out your name three times.” Eleanor O’Neill: Writer at ICAS.

Amazon, the online retail giant, has mastered the art of ecommerce. By embracing cutting edge technology to analyse and make use of the massive amount of customer data they have access to, they have become the pros of supply chain optimisation, price optimisation and fraud detection. With sophisticated advertising algorithms, and leveraging their
Amazon Elastic MapReduce platform for machine learning, the company has built an empire by providing goods to their customers faster and cheaper than their competitors, as well as exceptional customer service.

“Amazon.com Inc is a leader in collecting, storing, processing and analysing personal information from you and every other customer as a means of determining how customers are spending their money. The company uses predictive analytics for targeted marketing to increase customer satisfaction and build company loyalty.” – Jennifer Wills: Owner of JDW Writing.

 

#2 – GOOGLE

“Google is of course an expert in Big Data. They have developed many open source tools and technologies that are widely used in the big data ecosystem. Using many different Big Data techniques, it is capable of sifting through millions of websites and petabytes of data and to give you the right answer within milliseconds. How do they do that?” – Datafloq.

Aside from their impressive search engine, google’s strategy of mining data and placing targeted ads in front of customers who have used free google products before has been a key factor in their success, allowing them to track customers based on their behavior and interests. Google’s service offering to businesses looking to get their ads in front of the right customers has been a huge revenue builder for the organisation.

“Google has not only significantly influenced the way we can now analyse Big Data (think MapReduce, BigQuery, etc.) – but they probably are more responsible than anyone else for making it part of our everyday lives. I believe that many of the innovative things Google is doing today, most companies will do in years to come. Although these days Google’s Big Data innovation goes well beyond basic search, it’s still their core business.” – Bernard Marr: Founder & CEO of Bernard Marr & Co.

 

#3 – NETFLIX

With a user base of approximately 99 million, data scientists at Netflix collect and analyse a colossal amount of behavioral data to reveal insights for decision-making in a way that differentiates them from competitors like Stan and Amazon Prime Video.

“From predicting the kind of content that would garner high viewership to recommending content to specific users, Netflix uses data everywhere. In fact, since its days of being a DVD-by-mail service, Netflix placed prime importance on collecting user data and building a recommendation system. Cinematch was the first algorithm behind their recommendation system. After launching their streaming media service in 2007, it took them 6 years to collect enough data to predict the sure-shot success of their first original production ‘House of Cards’. Data accumulated from numerous sources influence decisions regarding shows. Not only user data, Netflix also observe data generated by piracy sites. “Prison Break” is a hit show on that front.” – Toai Chowdhury: Author at upX Academy.

 

#4 – AMERICAN EXPRESS

“The AMEX team now comprises 800 data scientists globally. American Express claims the lowest fraud loss rate on their records, and among the lowest in the industry. The company states that benefits from fraud improvement alone have paid for their investments in Big Data.” – Randy Bean: CEO & Founder of NewVantage Partners LLC.

AMEX has improved their identification of customer attrition using IBM’s SPSS predictive analytics modelling software. The model delivers a list of prospective customers at highest risk, which allows the organisation to communicate with methods such as direct marketing and follow-up calls.

“American Express increasingly is moving away from focusing on its traditional function of providing credit for consumers and providing merchant services for processing transactions, and toward actually making the connection between consumers and the businesses that want to reach them. The company is using its vast data flows to develop apps that can connect a cardholder with products or services. One app looks at past purchase data and then recommends restaurants in the area that the user is likely to enjoy.” – Bernard Marr: Founder & CEO of Bernard Marr & Co.

 

#5 – APPLE

“With the help of Big Data Analytics and Hadoop cloud, Apple has positioned itself as not just one of the best tech companies around, but one of the best companies period. That reign will likely continue into the future as Apple utilises Big Data in new and exciting ways.” – Jonathan Buckley: Founder & Principal of The Artesian Network LLC.

Apple’s partnership with enterprise experts like Cisco, Deloitte, IBM and SAP has impacted their success as a powerful presence in the mobile market, with millions of loyal customers around the world. The wide range of apps they have released for banking, insurance, travel and entertainment; and the launch of wearable devices like the iWatch, Apple is collecting more customer data than ever before.

“As well as positioning itself as an ‘enabler’ of Big Data in other people’s lives, it has also been put to use in its own internal systems. Apple has often been secretive about the processes behind its traditionally greatest strength – product design. However it is known that Big Data also plays a part here. Data is collected about how, when and where its products – Smart phones, tablets, computers and now watches – are used, to determine what new features should be added, or how the way they are operated can be tweaked to provide the most comfortable and logical user experience.” – Bernard Marr: Founder & CEO of Bernard Marr & Co.

 

 

For more resources, please see below:

10 Companies That Are Using Big Data

How Companies Are Using Big Data & Analytics

6 Ways To Win In Business With Big Data Analytics

16 Case Studies of Companies Proving ROI of Big Data

 

Google

Wow! Big Data At Google

How Google Applies Big Data To Know You

What Would Google Do? Leveraging Data Analytics To Grow Your Organisation

 

Apple

How Apple Is Using Big Data

How Apple Uses Big Data To Drive Business Success

 

Amazon

Amazon EMR

How Amazon Is Leveraging Big Data

7 Ways Amazon Uses Big Data To Stalk You

How Amazon Became The World’s Largest Online Retailer

 

American Express

Inside American Express’ Big Data Journey

American Express Charges Into The World of Big Data

How Predictive Analytics Is Tackling Customer Attrition At American Express

 

Netflix

Big Data: How Netflix Uses It To Drive Business Success

How Netflix Uses Big Data Analytics To Ensure Success

Deep Learning Technologies Enabling Innovation

“Deep Learning has had a huge impact on computer science, making it possible to explore new frontiers of research and to develop amazingly useful products that millions of people use every day.” – Rajat Monga, Engineering Director at TensorFlow & Jeff Dean, Senior Fellow at Google.

With innovation driving business success, the demand for community-based, open-source software that incorporates AI & deep learning is taking over start-ups and enterprises alike. We’ve rounded up a few successful deep learning technologies that are making a big impact.

 

#1 – TensorFlow

TensorFlow is an open source software library that uses data flow graphs for numerical computation. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays communicated between them. With extensive built-in support for deep learning, TensorFlow can compute any algorithm that can be expressed in a computational flow graph.

“TensorFlow was built from the ground up to be fast, portable, and ready for production service. You can move your idea seamlessly from training on your desktop GPU to running on your mobile phone. And you can get started quickly with powerful machine learning tech by using our state-of-the-art example model architectures.” – Google Research Blog.

 

#2 – IBM PowerAI

If you’re looking for a seamless, fast-scaling machine learning platform, IBM PowerAI might be the deep-learning solution you’re after. Offering a collection of the most popular open source frameworks for deep learning in one installable package, PowerAI simplifies the installation and system optimisation required to bring up a deep learning infrastructure.

“PowerAI makes deep learning, machine learning, and AI more accessible and more performant. By combining this software platform for deep learning with IBM® Power Systems™, enterprises can rapidly deploy a fully optimised and supported platform for machine learning with blazing performance. The PowerAI platform includes the most popular machine learning frameworks and their dependencies, and it is built for easy and rapid deployment. PowerAI requires installation on IBM Power Systems S822LC for HPC server infrastructure.” – IBM

 

 

#3 – Intel Nervana

Nervana Systems, acquired by Intel last year, is now known as Intel Nervana and referred to as ‘the next big shift inside corporate data centers.’

“Nervana has built an extensive machine learning system, which runs the gamut from an open-sourced software platform all the way down to an upcoming customised computer chip. The platform is used for everything from analysing seismic data to find promising places to drill for oil to looking at plant genomes in search of new hybrids.” – Aaron Pressman: Senior Writer at Fortune.

This state-of-the-art deep learning system is made up of curated, enterprise-grade collections of the world’s most advanced deep learning models and is updated on a regular basis.

“The Intel® Nervana™ Deep Learning Studio, a suite of tools with an easy-to-use interface, dramatically simplifies the deep learning process and accelerates time-to-solution. After you import your data, you can extend one of our state-of-the-art models or build your own. Then, you can kick off training with single click and track progress on the dashboard. All the capabilities of the platform are also accessible via a powerful command line interface.” – Intel Nervana.

 

#4 – NVIDIA Deep Learning SDK

‘The NVIDIA Deep Learning SDK provides high-performance tools and libraries to power innovative GPU-accelerated machine learning applications in the cloud, data centers, workstations, and embedded platforms.’ – NVIDIA.

Offering a comprehensive development environment for building new GPU-accelerated deep learning algorithms, and the inclusion of libraries for deep learning primitives, inference, video analytics, linear algebra, sparse matrices, and multi-GPU communications, your business could dramatically increase the performance of existing applications.

“With the updated Deep Learning SDK optimised for Volta, developers have access to the libraries and tools that ensure seamless development and deployment of deep neural networks on all NVIDIA platforms, from the cloud or data center to the desktop to embedded edge devices. Deep learning frameworks using the latest updates deliver up to 2.5x faster training of CNNs, 3x faster training of RNNs and 3.5x faster inference on Volta GPUs compared to Pascal GPUs.” – NVIDIA.

 

 

For more resources, please see below:

IBM Power AI

Intel Nervana Platform

Why Deep Learning Is Suddenly Changing Your Life

Nividia Accelerated Computing – Deep Learning Software

Why Intel Bought Artificial Intelligence Startup Nervana Systems

TensorFlow – Google’s Latest Machine Learning System, Open Sourced For Everyone

Intel Is Paying More Than $400 Million To Buy Deep-Learning Startup Nervana Systems

PowerAI: The World’s Fastest Deep Learning Solution Among Leading Enterprise Servers

Data’s Growing Potential To Transform Business

“Big Data does not only refer to online activity but also to behaviour offline, including use of credit cards or even smartphones, which send GPS locations and records behaviour. The existence of large volumes of data that can be used for different applications provides those willing to data mine and analyse with several opportunities.” – Daniel Abela: Owner & Managing Director at Redorange.

In the past few years, Big Data analytics has become a game-changer for many businesses worldwide, with profitable outcomes achieved in successful startups like Treasure Data and MapD, and large enterprises like Amazon and Apple. With new and innovative technologies continuing to launch at a rapid pace, the potential for growth won’t be slowing down anytime soon.

“The integrated use of analytics, Big Data, the cloud, the Internet of Things (“IoT”), mobile, and application development—is driving change at unprecedented rates. Our digital economy is subject to Moore’s law and digital transformation has become the new normal.” – Forbes.

Here’s some examples of how you can use data analytics to grow your business.

 

#1 – Business Intelligence For Better Decision-Making

“No matter what BI application is used, the reality is that organisations are continuously searching for ways to get more value out of their data. BI provides one of the best ways to transform data sources into interactive information that can lead to better decision making and planning.” – Lyndsay Wise: Solution Director at Information Builders.

The aim of business intelligence is to generate value, insight and support better decision-making. With a myriad of BI tools in the market delivering real-time insights on user-friendly dashboards, businesses have more power than ever when it comes to leveraging information to their advantage. We’ve rounded up a few successful ones to help you decide which tool is right for your business.

 

Qlik Sense

With the ability to easily combine your data sources and get detailed reports in an instant, Qlik has been deemed as an effective and user-friendly analytics tool by its users.

“With the Associative engine at its core, Qlik Sense lets you discover insights that query-based BI tools simply miss. Freely search and explore across all your data, instantly pivoting your analysis when new ideas surface. You’re not restricted to linear exploration within partial views of data. And you get total flexibility with a cloud-ready data analytics platform that supports the full spectrum of BI use cases – ideal for any analyst, team or global enterprise.” – Qlik.

 

Sisense

“Designed to be used by people who need to consume and analyse large amounts of data but have little or no prior experience in data crunching.” – Forbes.

An industry leader in business intelligence tools, this agile tool lets you analyse and visualise both big and disparate datasets and adapts to the needs of your business.

“Our Single-Stack™ architecture takes you from data integration to visualisation with a single BI software solution, eliminating the need to use additional tools.” – Sisense.

 

Microsoft Power BI

“It is the exact visually-appealing, dynamic, and user-friendly tool every developing company needs, and has thus brought a number of critical benefits.” – financesonline.com.

Power BI is a set of business analytics tools designed to analyse data, share insights, provide a 360-degree view of important metrics available on all devices, receive real-time updates and provide hundreds of connections to popular business apps.

“Power BI can unify all of your organisation’s data, whether in the cloud or on-premises. Using the Power BI gateways, you can connect SQL Server databases, Analysis Services models, and many other data sources to your same dashboards in Power BI. If you already have reporting portals or applications, embed Power BI reports and dashboards for a unified experience.” – Microsoft Power BI.

 

#2 – Digitisation Of Business Processes For Operational Efficiency & Customer Retention

“Spoiled by user experiences on Google and Amazon, people are increasingly demanding enhanced digital access to their records, as well as instantaneous access to the services they’re buying. This increases the pressure on traditional companies and leaves them vulnerable to disruption.” – Sharon Fisher: Content Strategist at The Economist Group.

Digitisation of people and processes is the future of business. The end-to-end customer experience design of your business can make or break your competitive edge. As demands and expectations grow, automation and optimisation become key to customer retention and organisational productivity.

“Intuitive interfaces, around-the-clock availability, real-time fulfillment, personalised treatment, global consistency, and zero errors—this is the world to which customers have become increasingly accustomed. It’s more than a superior user experience, however; when companies get it right, they can also offer more competitive prices because of lower costs, better operational controls, and less risk.” – McKinsey & Company.

Using Big Data analytics to implement automated operational strategies into your business model can be both a cost and time effective strategy, as well as an enabler for revenue growth.

“Automation gives fast growing companies the tools to keep up, but the how-to-get-there can seem like a daunting task. Any successful owner, founder, or CEO knows you have to plan for growth. That plan should include finding the right technology that can scale with your business — and automation must be integral to that plan.” – Salesforce.

 

 

#3 – Innovation & Growth Using Big Data Analytics Powered By Cloud Computing

“Whether making the decision to move to the cloud is instigated by economics or the ever-increasing speed of business, organisations need to get data-driven faster, and turning to the Cloud sooner rather than later may just be the answer.” – Dataversity.

Companies who maximise their use of analytics have a faster rate of growth and are in a stronger position to innovate than those who don’t. Using the cloud as a platform for speed, scale, customer engagement and innovation has increased the performance of the companies below.

 

Atlassian – “Aussie startups are thriving thanks to cloud technology services. Atlassian, a company that sells $100m worth of software to 130 different countries per year is an Australian startup success story. Atlassian has grown from a tech startup making clever use of cloud technologies, to an internationally renowned, billion-dollar company.” – Amazon Web Services.

Founded in 2002, Atlassian is a software company with various collaboration tools used by enterprises and startups worldwide.

“Atlassian uses AWS to scale its issue-tracking software applications faster than before, provide improved services to tens of thousands of global customers, and enhance its disaster recovery and availability. The Australia-based organisation provides software that helps developers, project managers, and content managers collaborate better. Atlassian uses Amazon EFS to support customers deploying JIRA Data Center on AWS, and also runs an internal issue-tracking application platform on AWS.” – Amazon Web Services.

 

Pearson – Founded in 1998, Pearson is a global online education provider that offers learning resources to a wide range of people, from preK-12 education and higher education to industry professionals.

“Pearson is using the cloud to transform the way it delivers education worldwide. The cloud is enabling Pearson to establish a more flexible global hybrid infrastructure with common systems and processes, which frees up resources to invest in new, more web-oriented educational products that deliver measurable outcomes for learners. This is part of an enterprise-wide business transformation that will help accelerate the company’s shift towards fast-growing markets — like South Africa and China — and educational products that are increasingly digital in nature.” – Forbes.

 

Judo Capital – “Working with cloud based services and capabilities, provided by Itoc, has enabled us to remain focused on our true mission, while achieving our vision of an IT-less future.” – Graham Dickens: Chief Technology Officer at Judo Capital.

Judo Capital, built by a small group of highly experienced bankers, is a specialist financier designed to address the financial needs of Australian SMEs. Using Itoc, a provider of a range of cloud and DevOps services, they have been able to leverage growth through better decision-making.

“Designed and built from the ground up in just 6 months, the Judo team and their technology partners have created a new breed of platform, a true ecosystem in the cloud that supports real time effective distribution of information, transparent communication and decision making. The result of which empowers Judo bankers and brokers to deliver an unrivalled service and provide customers with the opportunity to gain insight and transparency into the renowned ‘dark art’ that is today’s customer experience of SME lending.” – Richard Steven: CEO of Itoc.

 

 

For more resources, please see below:

Big Data, Huge Opportunities

Big Data & Advanced Analytics

How To Digitise Your Business In Simple Steps

Accelerating The Digitisation Of Business Processes

Why Automation Is Essential To Your Business Growth

Four Ways To Innovate Using Big Data And Analytics

Time To Digitise Business Processes, McKinsey Says

Business Transformation: How Big Data Analytics Helps

8 Ways You Can Grow Your Business Using Data Science

Four Reasons Why Big Data Analytics In The Cloud Makes Sense Now

Business Intelligence, Data Transformation And Better Decision Making

Using Rapid Process Digitisation To Transform The Customer Experience

The Importance Of Big Data and Analytics In The Era Of Digital Transformation

How Digital Disrupts Operations, Business Processes And Customer Experience

Seven Business Process Automation Benefits That Make Your Company More Money

 

Business Intelligence Tools

Sisense

Qlik Sense

Microsoft Power BI

15 Business Intelligence Tools For Small And Big Businesses

 

Businesses Leveraging Cloud Computing

Itoc

Pearson

Atlassian

Judo Capital

Amazon Web Services

Case Study: Unleashing The Potential Of Australian Businesses

The Advantages Of Cloud Computing For Startups

Three Companies That Transformed Their Businesses Using Cloud Computing

Key Players In Automation & Artificial Intelligence

“Innovations in digitisation, analytics, artificial intelligence, and automation are creating performance and productivity opportunities for business and the economy.” – McKinsey & Company.

With the rise of artificial intelligence and automation, we’ve seen a huge shift in how many jobs are being done in industries like agriculture, logistics, manufacturing and much more. As technology continues to advance at a rapid place, the number of machines performing data analysis and cognitive tasks are multiplying.

We’ve rounded up a few of the most popular automation and artificial intelligence platforms today.

 

#1 – DeepMind Technologies

Created to push boundaries, the founders behind DeepMind, a world leader in AI research, believe that this will be one of the most beneficial scientific advances ever made. Acquired by Google in 2014 and backed by investors like Elon Musk, Peter Thiel and Li Ka-shing, the company’s mission is to ‘solve intelligence.’

“I think we’re going to need artificial assistance to make the breakthroughs that society wants,” Hassabis says. “Climate, economics, disease — they’re just tremendously complicated interacting systems. It’s just hard for humans to analyse all that data and make sense of it. And we might have to confront the possibility that there’s a limit to what human experts might understand. AI-assisted science will help the discovery process.” – Demis Hassabis: Founder & CEO of DeepMind.

 

#2 – IBM Automation With Watson

With Watson, companies are able to get actionable insights through the combination of automation and analytics. It promises to deliver more value to customers and make your employees more productive by delivering the ideal balance between cost and performance.

“IBM Automation With Watson has the capability to understand natural language, think, learn and get smarter over time. This level of automation involves more than just replacing redundant tasks with software, It’s capabilities that are enabled by analytics, cloud, mobile and cognitive computing.” – IBM.

 

#3 – Amazon Echo

This artificially intelligent bluetooth speaker can make your house a whole lot smarter. Now available for purchase to the public, this voice- controlled assistant is being called ‘the future of home automation.’

“Amazon Echo is a hands-free speaker controlled with your voice. It features a personal assistant called Alexa, who will perform various tasks for you and control various systems. There are seven microphones within Echo, all of which feature enhanced noise cancellation and far field voice recognition, meaning you can ask Alexa a question from any direction, even when playing music, and she should still hear you.” – Britta O’Boyle: Features Editor at Pocket-lint.

Got any questions about AI & Machine Learning? Check out Context’s partnership with Amazon Web Services.

 

#4 – Google Home

Google Home, powered by Google Assistant, launched in Australia earlier this year as Amazon Echo’s rival in the home automation game; But which voice assistant you prefer is based on your priorities, what services you’re already subscribed to and whether or not they would be compatible with the device.

“While Amazon may have a head start, Google’s been doing AI and voice commands for years, so both devices are pretty powerful already. Of course, Amazon has already proven that it will add new updates to the Echo regularly, but we’ll have to wait and see if Google will keep up that same pace.” – Eric Ravenscraft: Writer at Lifehacker Australia.

 

 

 

For more resources, please see below:

Google Home

DeepMind: Inside Google’s Super-Brain

IBM Shaping The Future Of Cognitive Automation

What’s Now And Next In Analytics, AI & Automation

The Age Of Analytics: Competing In A Data-Driven World

IBM Watson takes on IT Services With New Automation Platform

Amazon Echo Is The First Artificial Intelligence You’ll Want At Home

Smart Home Assistant Showdown: Amazon Echo Vs. Google Home

Amazon Echo: What Can Alexa Do & What Services Are Compatible?

Amazon Echo Vs. Google Home: Which Voice Controlled Speaker Is Best For You?

Preparing Your Business For Digital Transformation With Data Science & Cloud Computing

“Modern enterprise technologies generate vast amounts of data, which can be challenging and time-consuming to analyse. By building data science models that are accessible, meaningful, and actionable, however, you can spot new opportunities quickly and speed up decision-making.” – The Infor Blog.

When it comes to speed of execution and reliability of insights, data science is a key component for success. Analysing data patterns allow businesses to build models that create forecasts of what can happen in different scenarios, create solutions and generate actionable insights.

 

THE KEY DRIVERS OF DIGITAL TRANSFORMATION

“Digital transformation can be defined as the acceleration of business activities, processes, competencies and models to fully leverage the changes and opportunities of digital technologies and their impact in a strategic and prioritised way.” – Mark Edmead: IT Transformation Consultant & Trainer at MTE Advisors.

Organisations are faced with the constant challenge of adapting to a changing business landscape in order to remain competitive. This includes keeping up with demand, changes in customer behavior and adopting new and innovative technologies into the business model. The key drivers behind digital transformation include profitability, scalability, and added value propositions to product and service offerings.

“Enterprises should be able to deliver custom applications at the speed of ideas. That’s the way to stay ahead in competition in today’s world. Lowering operational costs and enhancing customer experience is the core of digital transformation.” – Forbes.

When it comes to implementing digital transformation effectively, it’s not just about technology, it’s about building the right team. Organisational culture, the right mindset, good communication skills, and a clear understanding of the digitisation strategy are key players in the speed and effectiveness of digital transformation. Employees that are empowered by IT leaders and have received the right training feel more encouraged and enabled to embrace technology and data-driven decision making.

This is why it’s important to address any skill gaps before digital transformation takes place, and to also have a criteria of skill sets required for new employees, based on the goals your organisation is trying to achieve.

“The people you need to hire are the flexible, innovative and entrepreneurial ones. They’re not afraid to fail. They can pick up new techniques very quickly. They’re curious.” – Talent Sonar.

 

DATA SCIENCE IN THE CLOUD

“Data science is enabling the next generation of enterprise software, resulting in solutions that tell users what is going to happen and what they should do about it today.” – Ben Rossi: Contributor at Information Age.

Exploding data volumes are increasing the complexity of analysis, and with most data scientists running tools like AWS Machine Learning, Azure, Python and R in the cloud, it’s safe to say that data science and cloud computing go hand-in-hand.

Many organisations are investing a lot of time and resources on Big Data and making sure it stays in the cloud, in order to experience benefits like flexibility, ability to collaborate, reduced IT costs, and easy access to data.

“Businesses need to be continuously embracing new online marketing channels, bringing new digitally-evolved products to market, refreshing the value propositions of their offerings, and utilising cloud technologies to enable scaling and globalisation at pace.” – Conservit.

 

DATA STORAGE & ACCESSIBILITY

“Processing data and shifting it to Cloud organisations avails two benefits, including tackling large sets of data for decision making and reducing the overall cost of infrastructure.” – Edureka!

Data storage is a challenge for many businesses, but Cloud computing has made storing and analysing data much easier by simplifying IT management, data maintenance and infrastructure updates.

“Value of data is dependent on frequency and speed of access needed to deliver business requirements. Digital enterprises operate with radically different datanomics than conventional physical businesses. Here, digital information is the business.Yes, that means that there is exponentially more data to store and manage. But it also means a fundamental difference in how that data needs to be stored and managed.” – Ash Ashutosh: Contributor at InfoWorld,

Cloud computing, built around a series of hardware and software that can be accessed remotely through any web browser, can greatly assist businesses looking to improve their service offerings through accessible, machine readable data.

“Cloud computing offers your business many benefits. It allows you to set up what is essentially a virtual office to give you the flexibility of connecting to your business anywhere, any time. With the growing number of web-enabled devices used in today’s business environment (e.g. smartphones, tablets), access to your data is even easier.” – Business Queensland.

 

 

For more resources, please see below:

Benefits Of Cloud Computing

Why Your Business Needs Digital Transformation

5 Effective Steps To Hire For Digital Transformation

Why Digital Transformation Is Not Just About Technology

The Importance Of Data Science With Cloud Computing

Running Scalable Data Science on Cloud With R & Python

How Digital Transformation Disrupted The Storage Industry

How To Digitally Transform Your Business With Data Science

Digital Transformation: Why It’s Important To Your Organisation

Digital Transformation and Innovation In Today’s Business World

How Data Science Is The Driving Force Behind Successful Digital Transformation

Blockchain Technology Securing The Internet Of Things

“If we are most likely to understand the Internet of Things (IoT) by describing how it relates to objects we use every day, such as a toaster or bicycles, we miss the big picture: a futuristic global network of connected devices, transforming industrial and business processes in a way that we cannot yet comprehend.” – Rhian Lewis: Co-Founder of Count My Crypto.

This revolutionary concept of IoT is already well under way, and the multitude of smart devices connected to it could transform businesses, homes and cities. But without the right security strategy, the more devices we connect, the more problems we encounter.

 

SECURITY

“The intersection between IoT and Blockchain is a fascinating area. Gartner has predicted there will be 20.4 bln connected devices by 2020 with smaller, more efficient sensors and microprocessors offering the potential for use cases of which we can barely dream today. Decentralised architectures mitigate against single points of failure while providing standard protocols for devices to discover each other and communicate.” – The Cointelegraph.

With security concerns on the rise, blockchain technology is not only a safety measure, it’s a cost-saving and error-reducing opportunity.

“Blockchain’s potential to transform the way we think about IoT security is actually a side effect of an even greater opportunity: to rethink problems with online identity that have been festering for decades.” – The Wall Street Journal.

Blockchain, as a way to structure data, is allowing entities to share a digital ledger across a network of computers without the need for a central authority. No single party has the ability to tamper with records. Encryption enables the entities to share a common infrastructure for database retention. The blockchain database is not stored in one location, meaning that records are truly public and can be verified easily. With no centralised version of this information, a hacker can’t corrupt it.

“Although IoT devices are miracles of engineering, they are still underpowered compared to the hardware powering successful blockchains.” – Forbes.

 

IMPLEMENTING BLOCKCHAIN TECHNOLOGY INTO YOUR BUSINESS

“The distributed ledger technology that started with bitcoin is rapidly becoming a crowdsourced system for all types of verification. Could it replace notary publics, manual vote recounts, and the way banks manage transactions?” – strategy-business.com.

Blockchain is being used by businesses for a myriad of things like accepting payments, hiring and even paying wages with Bitwage.

“The clearest and easiest way to start using blockchain tech is to start accepting Bitcoin – or another cryptocurrency – for payments. These payments are fine for peer-to-peer transactions, but they work even better for small businesses.” – Capterra.

Bitcoin is a worldwide cryptocurrency and digital payment system. Units of currency are regulated using encryption techniques to verify the transfer of funds, operating independently of a central bank. Bitcoin is received, stored, and sent using software known as a Bitcoin Wallet. Getting started with bitcoin is relatively easy. By simply downloading the Bitcoin Wallet of your choice, you can send and receive bitcoin.

“This distributed ledger — the first blockchain ledger ever created was for bitcoin, and it set the pattern for others — represents the most innovative and potentially influential aspect of the technology. Participants interact with one another using pseudonyms, and their real identities are encrypted. The ledger uses public-key encryption, which is virtually impossible to break, because a message can be unlocked only when a public and a private element (the latter held only by the recipient) are linked.” – strategy-business.com.

Although controversial, businesses around the world are seeing the potential that this technology has to not only how we handle payments, but transform how we do business in every way, from how stock exchanges operate, to re-shaping capital markets, to smart contracts. But the global blockchain revolution won’t happen overnight.

“Today, you have to assemble a lot of pieces by hand if you want to develop a blockchain platform, just like how, in 1995 or 1996, if you wanted to publish a website, you had to work with html. You had a page editor where you would hand write the html page almost line by line. No one does that anymore. Now you can create a web page without touching a line of code with Squarespace, WordPress, Tumblr, etc. That’s where we need to go.” – Laura Shin: Senior Editor at Forbes.

 

 

For more resources, please see below:

 

The Business Blockchain

Bitcoin – The Internet Of Money

A Strategist’s Guide To Blockchain

4 Critical Security Challenges Facing IoT

What Blockchain Is And What It Can Do

3 Ways To Use Blockchain In Your Business This Year

How Blockchain Could Revolutionise The Internet Of Think

Could Blockchain Technology Help You Find Better Employees?

Looking To Integrate Blockchain Into Your Business? Here’s How

What Is Blockchain Technology? A Step-By-Step Guide For Beginners

Are We Creating Insecure Internet Of Things (IoT)? Security Challenges & Concerns

Blockchain: Wall Street’s Most Game-Changing Technology Advance Since The Internet

Career Opportunity For Linux Administrators At Contexti | Big Data Analytics

Location: Sydney, Australia

 

ABOUT US

Contexti is a specialist Big Data Analytics Solutions company serving the Australian market. With strong partnerships with AWS, Cloudera, Talend and Mesosphere, we provide training, consulting and managed services for some Australia’s leading enterprises where data is at the heart of their business transformation.

We are a small but growing Sydney based team; most work is performed from our CBD office location, but occasionally we will work from customer sites. We prioritise cultivation of positive relationships with customers and seek to provide a good team atmosphere with a healthy work-life balance. While not for everyone, a significant portion of us are also on a quest to identify and consume the best Ramen and Laksa Sydney has to offer.

 

THE OPPORTUNITY

We’re looking for an experienced Linux Administrator who will be responsible for maintaining, designing, implementing, and monitoring predominantly cloud based systems. Collaboration with other team members is essential as we continue to develop automation strategies and deployment processes. You will become an integral part of the team, taking ownership of implementation work as well as working ad hoc problems through to resolution.

Your responsibilities:

  • Implement, maintain and support solutions that enable positive outcomes for our customers.
  • Take on complex integration problems making diverse application components work together.
  • Help tune performance and ensure high availability of infrastructure.
  • Design and develop infrastructure monitoring and reporting tools.
  • Develop and maintain configuration management solutions.
  • Develop test automation frameworks in collaboration with rest of the team.
  • Create tools to help teams make the most out of the available infrastructure.

 

ABOUT YOU

The person:

  • Looking for purpose in your work and the company you work for
  • You’re ready to learn, grow and contribute
  • You love to help customers and team members

 

You have the following skills:

  • Experience with Linux servers in virtualized environments.
  • Familiarity with the fundamentals of Linux scripting languages including Bash and Python.
  • Experience installing, configuring, and maintaining services such as Apache Httpd, MySQL, nginx, etc.
  • Exposure to Kerberos, and better still experience integrating Linux with Active Directory, e.g. SSSD, Centrify, etc.
  • Basic knowledge of configuration management tools (e.g as Ansible, Puppet and Chef).
  • Exposure to infrastructure versioning, provisioning and continuous integration tools (e.g Jenkins, HashiCorp TerraForm/Vagrant/Packer).
  • Familiarity with load balancing (e.g. HAProxy), firewalls, etc.
  • Experience with containerisation technologies, such as Docker, Apache Mesos, DC/OS, etc.
  • Experience with prominent core AWS services (VPN, VPC, EC2, EBS, S3, IAM, CloudWatch etc).
  • Hadoop experience would be an added bonus, but is not a requirement – you can learn this from us.
  • Most likely you will have a Computer Science Degree, you will certainly have relevant industry experience.

 

HOW TO APPLY

  • You must hold the right to work in Australia to be considered for this role.
  • Please send your resume and short cover note to jobs@contexti.com

Note to Recruiters – We will be filling these roles directly.

For more resources, please see below:

How To Succeed On Your Big Data Journey
5 Tips On How To Land A Big Data Job In Australia
Data & Analytics Australian Recruitment Market Insights By FutureYou

 

3 Strategies For Getting The Most Value From Your Data Lake

“Big Data’ and ‘data lake’ only have meaning to an organisation’s vision when they solve business problems by enabling data democratisation, re-use, exploration, and analytics.” – Carlos Maroto: Technical Manager at Search Technologies.

A data lake is a storage repository that acts as the central source of all your organisation’s current and historical data, both structured and unstructured. This data is transformed as it moves through the pipeline for things such as analysis, creating quarterly and annual reports, machine learning and data visualisation. The information contained in a data lake can be highly valuable asset, however, without the right structure, your data lake could turn into a data swamp.

Here’s three strategies for getting the most value from your data lake.

 

#1 – BUSINESS STRATEGY & TECHNOLOGY ALIGNMENT

“It’s important to align goals for your data lake with the business strategy of the organisation you’re working to support.” – Bizcubed.

What are the business goals you’re trying to achieve with your data lake? Operational efficiency? Better understanding of your customers? Will your current infrastructure help you achieve this while also maximising your profits? Aligning your goals with the technology you’re planning to implement will not only help you articulate what problem you’re trying to solve, but also improve your chances of gaining executive buy-in and winning the support of your team. The better the plan, the easier it is to identify possible roadblocks and the higher the chance of success.

“As technology teams continue to be influenced by the hype and disruption of Big Data, most fail to step back and understand where and how it can be of maximum business value. Such radically disruptive new business processes can’t be implemented without knowledge gathering and understanding how Big Data technology can become a catalyst for organisation and cultural change.” – Thierry Roullier: Director of Product Management at Infogix, Inc.

 

#2 – INTEGRATION & ARCHITECTURE

“You need to be able to integrate your data lake with external tools that are part of your enterprise-wide data view. Only then will you be able to build a data lake that is open, extensible, and easy to integrate into your other business-critical platforms.” – O’Reilly.

Technology is moving at a rapid place.The tools you use in your business may not cooperate well with your data lake, and may not support the data architectures of tomorrow. During the implementation process, one of the first things to look at is how adaptable your long-term technology investments are.

Big Data architectures are constantly evolving, and it’s important to select flexible data processing engines and tools that can handle changes to security, governance and structure without being too costly to the organisation. Before implementing anything, you need to have a clear vision of what you want the end technical platform to look like, and what components you will need to make that happen.

“Modern data onboarding is more than connecting and loading. The key is to enable and establish repeatable processes that simplify the process of getting data into the data lake, regardless of data type, data source or complexity – while maintaining an appropriate level of governance.” – Bizcubed.

 

#3 – DATA VIRTUALISATION & DEMOCRATISATION

“ Data virtualisation involves abstracting, transforming, federating and delivering data from disparate sources. The main goal of data virtualisation technology is to provide a single point of access to the data by aggregating it from a wide range of data sources.” – TechTarget.

Data lakes and data virtualisation tools work well together to solve different problems and provide a layer of intelligence that results in more agility and adaptability to change.

“ As an example, a virtual layer can be used to combine data from the data lake (where heavy processing of large datasets is pushed down) with golden records from the MDM that are more sensitive to stale copies. The advance optimisers of modern data virtualisation tools like Denodo make sure that processing is done where it is more convenient, leveraging existing hardware and processing power in a transparent way for the end user. Security and governance in the virtual layer also add significant value to the combined solution.” – datavirtualizationblog.com.

Data democratisation is the ability for information in a digital format to be accessible to the average end user. The goal of data democratisation is to allow non-specialists to be able to gather and analyse data without requiring outside help.

“Data must be freed from its silos. Today, it resides in a variety of independent business functions, such as HR, manufacturing, supply chain logistics, sales order management and marketing. To get a unified view of this data, businesses are engaging in a variety of ad-hoc, highly labor-intensive processes.” – Computer Weekly.

 

For more resources, please see below:

Best Practices For Data Lakes

How To Build A Successful Data Lake

Five Keys To Creating A Killer Data Lake

Avoiding The Swamp: Data Virtualisation & Data Lakes

Democratising Enterprise Data Access: A Data Lake Pattern

How To Successfully Implement A Big Data/ Data Lake Project

Top Five Differences Between Data Lakes & Data Warehouses

 

2018 Big Data Predictions

“There are only two certainties in Big Data today: It won’t look like yesterday’s data infrastructure, and it’ll be very, very fast.” – Matt Asay: Head of Developer Ecosystem at Adobe.

Technology and the power of data science have created huge leaps of growth for businesses who utilise it, and it’s no surprise that the mass increase of worldwide data will mean that Big Data will encounter some big changes in the year ahead.

 

#1 – COGNITIVE TECHNOLOGIES

Cognitive technologies are constantly evolving, and becoming more and more capable of performing tasks that require human intelligence.

“It is now possible to automate tasks that require human perceptual skills, such as recognising handwriting or identifying faces, and those that require cognitive skills, such as planning, reasoning from partial or uncertain information, and learning.” – Deloitte University Press.

Cognitive systems like IBM Watson are improving business products, processes and insights by allowing systems to interact with humans more naturally, and understand complex questions posed in natural language.

“Computing systems of the past can capture, move and store unstructured data, but they cannot understand it. Cognitive systems can. The application of this breakthrough is ideally suited to address business challenges like scaling human expertise and augmenting human intelligence.” – IBM.

 

#2 – PRESCRIPTIVE ANALYTICS

“If analytics does not lead to more informed decisions and more effective actions, then why do it at all?” – Mike Gualtieri: Vice President & Principal Analyst at Forrester Research.

Informed decisions lead to better results. Prescriptive analytics incorporates both predictive and descriptive analytics, and is used to determine the best course of action to take in a given situation. It involves a combination of mathematics, analytics and experimentation that help businesses make
better decisions based on logic. When used correctly, it can help businesses optimise production and enhance the customer experience.

“Prescriptive analytics predicts not only what will happen, but also why it will happen providing recommendations regarding actions that will take advantage of the predictions.” – halobi.com

 

#3 – FAST DATA IS THE NEW BIG DATA

“The argument is that big isn’t necessarily better when it comes to data, and that businesses don’t use a fraction of the data they have access to. Instead, the idea suggests companies should focus on asking the right questions and making use of the data they have — big or otherwise.” – Forbes.

Fast data applies Big Data Analytics to smaller datasets in near-real or real time to mine both structured and unstructured data and quickly gain insight on what action to take. With streaming systems like Apache Storm and Apache Kafka, the value of fast data is being unlocked.

“As organisations have become more familiar with the capabilities of Big Data Analytics solutions, they have begun demanding faster and faster access to insights. For these enterprises, streaming analytics with the ability to analyze data as it is being created, is something of a holy grail.” – Dana Sandu: Marketing Evangelist at SQLstream.

 

#4 – MACHINE LEARNING & AUTOMATION

“It’s possible to quickly and automatically produce models that can analyse bigger, more complex data and deliver faster, more accurate results – even on a very large scale. The result? High-value predictions that can guide better decisions and smart actions in real time without human intervention.” – sas.

The learning capabilities of machines are growing at a large scale, and connecting people, processes and products in new and exciting ways.

“Your digital business needs to move towards automation now while ML technology is developing rapidly. Machine learning algorithms learn from huge amounts of structured and unstructured data, e.g. text, images, video, voice, body language, and facial expressions. By that it opens a new dimension for machines with limitless applications from healthcare systems to video games and self-driving cars.” – Ronald Van Loon: Director at Advertisement.

Today, machine learning is transforming online businesses and being used by organisations for a myriad of things like fraud detection, real-time ads, pattern recognition, speech analysis and spam-filtering. But in 2018, machine learning is said to become faster and smarter than ever before, while also making better predictions for the future.

“Now machine learning seems to offer a solution for demand forecasting. With the inherent capability to learn from current data, machine learning can help to overcome challenges facing businesses in their demand variations.” – Dataversity.

 

#5 – AI ENHANCING CYBER SECURITY

“Artificial Intelligence is looking quite interesting for 2018 and the near future with the attempts to apply reinforcement learning to problems, which enables machines to model human psychology in order to make better predictions; or contesting neural networks with generative adversarial networks algorithms which requires less human supervision and enables computers to learn from unlabeled data; making them more intelligent.” – Exastax.

With capabilities of problem-solving and modeling human psychology, enhancements in AI are also said to be a defence mechanism for safeguarding data in the near future.

“Ironically, our best hope to defend against AI-enabled hacking is by using AI. AI can be used to defend and to attack cyber infrastructure, as well as to increase the attack surface that hackers can target, that is, the number of ways for hackers to get into a system. Business leaders are advised to familiarise themselves with the cutting edge of AI safety and security research.” – Harvard Business Review.

 

For more resources, please see below:

 

2018 Big Data Predictions

Big Data Changes Coming In 2018

Why Big Data Is Important To Your Business

Five Key Predictions For Data & Analytics Through 2020

17 Predictions About The Future Of Big Data Everyone Should Read

 

Cognitive Technologies

How To Get Started With Cognitive Technology

Cognitive Technologies: The Real Opportunities For Business

KPMG Invests In Game-Changing Cognitive Technologies For Professional Services

 

Prescriptive Analytics

What Exactly The Heck Are Prescriptive Analytics?

Descriptive, Predictive And Prescriptive Analytics Explained

 

Fast Data

Fast Data: The Next Step After Big Data

The Future Of Fast And Big Data Technologies

 

AI & Cyber Security

Cyber Intelligence: What Exactly Is It?

Top 10 Security Predictions Through 2020

Five Trends In Cyber Security For 2017 And 2018

The Future Of Artificial Intelligence: Prediction For 2018

AI Is The Future Of Cyber Security For Better And For Worse

18 Artificial Intelligence Researchers Reveal The Profound Changes Coming To Our Lives

Cyber Threats Are Growing More Serious, And Artificial Intelligence Could Be The Key To Security

 

Machine Learning & Automation

Machine Learning & Automation – What It Is & Why It Matters

The Future Of Machine Learning: Trends, Observations & Forecasts

 

Cloudera Acquires Fast Forward Labs To Enhance Machine Learning & AI Research

Given the speed of innovation in the digital realm, it’s exciting to see our partner Cloudera continue to stay ahead of the game with their recent acquisition of Fast Forward Labs (now known as Cloudera Fast Forward Labs), a top-tier applied research and advisory services company.

Cloudera Fast Forward Labs, will concentrate on practical research into new approaches to data science and applying research to business problems that are broadly applicable to a variety of industries and applications.

For the full story, check out Cloudera’s Recent Business & Financial Highlights.

For more resources, please see below:

Data Empowering Artificial Intelligence & Machine Learning

How Big Data Is Changing The Customer Experience & Improving SEO

Cyber Security Strengthened By Big Data Analytics & Machine Learning